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Abstract

We study the equivalence of models that capture the behaviour of systems, such as process-oriented information
systems. We focus on models that are not related by a bijection over their actions, but by an alignment between sets
of their actions. For this setting, we propose interleaving isotactics as an equivalence notion based on abstractions
that are induced by the alignment. We demonstrate that this notion is grounded in trace equivalence, provide a
temporal logic characterisation of the properties it preserves, prove decidability of the respective verification problems,
and present an implementation of a decision procedure for the equivalence notion.
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1. Introduction

The behaviour of a system is often described by a model that defines a set of actions and causal
dependencies for their execution. Such models, also referred to as process models, have been widely adopted
in the design and implementation of software systems in general [13] and process-oriented information systems
in particular [22]. Various applications require an assessment of the equivalence of two models that describe
a system’s behaviour. As examples, we consider applications from the domain of process-oriented systems:

Variation Management: In large organisations, a single process, and thus a single type of information
system, exists in many variations due to country-specific legal requirements, deviations in the IT infrastructure,
or organisational differences [32]. Models that describe these variations specify the same functionality, yet
rely on different sets of actions as basic building blocks. Ensuring that the models are free of behavioural
contradictions is a major concern when managing process variations, see [28].

Implementation of Reference Models: For several domains, best-practices and well-established standard
procedures have been published as reference models [10, 23]. In order to make effective use of reference
models, their equivalence needs to be assessed with respect to models that have been tailored and customised
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e: Update purchase order

s: Set customer for order

t: Select payment details

u: Modify payment details

v: Reset customer details

w: Assign order

x: Assign order

Figure 1. Two finite state machines modelling an excerpt of a business process and an alignment.

to a particular implementation environment. However, not all actions defined in a reference model may have
a direct counterpart in the implementation.

Process Querying: Process querying studies methods for managing, e.g., retrieving or manipulating,
repositories of models that describe observed and/or envisioned processes [17]. It involves correlation models
that relate actions of different abstractions of a system to each other (e.g., actions of a reference model and
their corresponding implementations). Behavioural equivalences can be used to induce correlation models.

The above applications have in common that the models, for which equivalence shall be assessed, typically
assume different levels of abstraction. In that case, the semantic correspondence between the actions of
such models cannot be captured by a bijection. Rather, actions are grouped in either model and the groups
of one model are related to the groups of another model by means of a binary relation, called alignment.2

Alignments are typically constructed using techniques for automated model matching [4, 29]. Note that
the groups that are part of the alignment may overlap, i.e., a certain action can be interpreted in terms of
different groups of actions in the other model. Hence, we do not narrow the scope to alignments that relate
occurrences of actions to each other, see [20], since those are not discovered by matching techniques.

For illustration, we consider two finite state machines that depict a process to issue purchase orders,
as implemented in two different systems, see Figure 1. Models m1 and m2 both contain actions related to
the handling of customer data, the modification of payment details, as well as the actual order setup. Yet,
when comparing the models, neither the actions nor their occurrences can be related by a bijection. For
instance, the action ‘a: Fetch customer data’ in model m1 relates to two actions, ‘s: Set customer for order’
and ‘v: Reset customer details’ in model m2. This relation cannot be traced back to established notions
of hierarchical action refinements [5, 27]. Action s in model m2 comprises functionality that does not only
relate to the handling of customer data, but also includes the setup of the order. As such, it also relates to
actions ‘d: Create purchase order’ and ‘e: Update purchase order’ in model m1. These complex relations
between the actions are captured in the alignment in Figure 1. The proposed alignment relates three sets of
actions of either model to each other.

In this paper, we address the problem of assessing behavioural equivalence of two models in the context of
a given alignment. We solve this problem by verifying equivalence based on abstractions, i.e., on the groups
of actions induced by the alignment, rather than the individual actions.

Taking up the example in Figure 1, the alignment defines the abstractions for the verification of equivalence.
The intuition of our approach is illustrated in Figure 2, where ri is an exemplary run of machine mi, for
i ∈ {1,2}. These runs induce traces w1 and w2 that contain sets of groups of actions, which can be seen as
the interpretation of the runs under the given alignment. For instance, the occurrence of action s in run r2 is
assigned all the groups of actions containing s in the alignment definition, namely {s, v} and {s,w, x}.

Based thereon, traces are compared by resolving each choice between groups of actions that have been
assigned to action occurrences, while considering the maximal sequences of these groups. In the example,
the first occurrence of action s in run r2 can be resolved as {s, v} (setting and resetting customer data),
which, under {a} & {s, v}, is in line with the occurrence of a in r1 (fetching customer data). Further, due
to {b, c} & {t, u}, both occurrences of b and c in r1 (entering and storing the payment method) correspond

2The term alignment used in this work is not to be confused with its use in process mining, where business alignment [24] refers
to the practice of comparing the real behaviour of an information system or its users with the intended or expected behaviour
and alignment refers to a concrete technique for quantifying differences between the observed and expected behaviour [25].
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Figure 2. Two example runs of the state machines from Figure 1 and their traces induced by the alignment.

to the occurrence of u in r2 (modifying payment details). Finally, {d, e} & {s,w, x} enables the abstraction
of occurrences of d and e in r1 (creating and updating a purchase order) and relating them to the second
occurrence of s followed by x in r2 (setting the customer and assigning an order). Here, unlike the first
occurrence of s that was resolved as {s, v}, the second occurrence is resolved as {s,w, x}.

This example illustrates that both runs r1 and r2 ‘mirror’ the behaviour of each other under the given
alignment: After handling the customer data, the payment details are set, before the purchase order is
managed. The equivalence verification relies on the explicit resolution of action occurrences when the action
is part of more than one group in the alignment. All the runs of a system must be mirrored by runs of the
other system to yield a behavioural equivalence of the systems.

Related Notions of Equivalence. Behavioural equivalences have been studied for decades, yet, established
notions, see [3, 26], are not applicable for the setting outlined above as they impose the assumption of a
bijection between the actions of two models. Thus, the traditional setting of equivalence verification can be
seen as a special case of the setting addressed here, requiring that the alignment is of a particular structure.

As illustrated by the example, we target a setting where differences in the number of occurrences are
abstracted. Such situations have been addressed by stutter behavioural equivalences, which are variants of
standard behavioural equivalences that allow actions to be mimicked by sequences of actions (rather than by
single actions) [6]. In this way, an action in an abstract model can be modelled as a sequence of actions in a
concrete model [1]. Stuttering equivalences are not applicable once the alignment relation defines overlapping
groups of actions. As such, they are limited to alignments that are grounded in hierarchical refinements.

Recently, there have been several attempts to define behavioural equivalence for general alignments. Spe-
cific notions have been proposed for different semantics: interleaving, linear time semantics [30]; interleaving,
branching time semantics [31]; and concurrent, linear time semantics [18]. However, all these existing notions
are ad-hoc, in the sense that:

(1) It is not known whether these notions are proper generalisations of the well-established behavioural
equivalences. That is, if an alignment collapses to a bijection between the actions of two models, it is not
known whether the proposed notions coincide with some known equivalences.

(2) It is not known what kind of system properties these notions preserve. That is, if two models show one of
the proposed equivalences, it is not known whether there is a class of properties that is preserved, e.g., in
terms of logic formulae as presented in [14] for standard equivalences and in [12] for stutter equivalences.

(3) It is not known, if and under which constraints any of the proposed notions is decidable.

Contributions. To assess behavioural equivalence of aligned models, we propose the notion of interleaving
isotactics. This notion is inspired by earlier ideas on concurrent, linear time isotactics [18] that, however, at
this stage suffers from the aforementioned three open issues. The intuition of isotactics (from the Greek:
ἴσος [isos] “equal”, and τακτική [taktiḱı] “tactics”, “policy”, “behaviour”) can be described as follows: Every
occurrence of an action can be mimicked by an arbitrary number of occurrences of any subset of actions of
some aligned group of actions, regardless of the structural relations of these actions in the model. Indeed, it
seems more natural to reason on the level of occurrences of actions rather than their structural relations in
models when reasoning about behavioural equivalence.

Concretely, this paper contributes:

C1: A grounding of isotactics in an established behavioural equivalence. Trace equivalence and isotactics
coincide for simple alignments (bijections over singleton sets of actions) and repetition-free sets of runs.
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C2: A Linear Temporal Logic (LTL) characterisation of the system properties preserved by isotactics. Given
an alignment, we show that tactic-invariant LTL formulae are preserved, regardless of the actual systems.

C3: Decidability of the logic characterisation. Tactic-invariance of LTL-formulae is decidable.
C4: Decidability of the equivalence. Isotactics is decidable for finite state machines.
C5: An open-source implementation of a decision procedure for isotactics for finite state machines. This

implementation is based on the arguments of the decidability proof and is publicly available.3

This paper proceeds with Section 2 that lists formal notions used to support the subsequent discussions. In
Section 3, we formalise the alignment of (models of) systems and propose the notion of isotactics. The main
results of this paper are summarised in Section 4. Sections 5 to 7 prove and discuss the main results. The
paper closes with concluding remarks in Section 8. Detailed proofs of all the results of this paper can be
found in Appendix A. Appendix B exemplifies the constructions used in one of the proofs of this paper.

2. Formal Framework

This section introduces formal notions that are used to support subsequent discussions.

Basic Notations. N denotes the set of all natural numbers including zero. Let i, j ∈ N. By min(i, j)
and max(i, j), we denote the minimum and maximum of i and j, respectively. Let A be a set. Then, by
℘(A), ℘>0(A), and ℘=1(A), we denote the power set of A, ℘(A) ∖ {∅}, and {x ∈ ℘>0(A) ∣ ∃a ∈ A ∶ x = {a}},
respectively. Let B be a set, and f ∶ A→ B be a function. If A′ ⊆ A, then by f(A′) we denote the set {b ∈ B ∣
∃a ∈ A′ ∶ f(a) = b}. Let R be a binary relation between A and B. Then, R−1 ∶= {(b, a) ∈ B ×A ∣ (a, b) ∈ R}
denotes the inverse of R. Let ≡ be an equivalence relation on A. Then, by ⟨a⟩≡, where a ∈ A, we denote
the equivalence class of A by ≡ that contains a. Moreover, by A/≡ we denote the set of all equivalence
classes of A by ≡, i.e., A/≡ ∶= {x ∈ ℘>0(A) ∣ ∃a ∈ A ∶ ⟨a⟩≡ = x}. We write A∗ to denote the set of all (finite)
words over A, including the empty word ε. Let w ∶= a1 . . . an ∈ A∗ be a word. Then, w(k) ∶= ak, where
k ∈ {1, . . . , n}, denotes the k-th character of w, and ∣w∣ ∶= n denotes the length of w. Let k ∈ {1, . . . , ∣w∣}, then
w[k⟩ denotes the suffix w(k) . . .w(n) of w starting from the k-th character of w. We call w repetition-free iff
for all k ∈ {1, . . . , n − 1}: w(k) /= w(k + 1). We call a set W of words repetition-free, if each of its members
w ∈ W is repetition-free. The concatenation of two words w = a1 . . . an and w′ = a′1 . . . a′m is defined as
ww′ ∶= a1 . . . ana

′
1 . . . a

′
m. For example, ŵ = ababahalamaha is a repetition-free word that results from the

concatenation of w = ababa and w′ = halamaha, i.e., ŵ = ww′.

Traces and Linear Temporal Logic. Let κ be a finite set. A κ-trace is an element of ℘(κ)∗, i.e., a finite
sequence of subsets of κ. For i ∈ {1, 2}, let κi be a finite set, and let Wi be a set of κi-traces. W1 and W2 are
trace equivalent up to a bijection b from κ1 to κ2, iff b induces an isomorphism between traces in W1 and W2.

Definition 2.1 (Trace Equivalence). For i ∈ {1,2}, let κi be a finite set, and let Wi be a set of κi-traces.
Let b be a bijection from κ1 to κ2. Then, W1 and W2 are trace equivalent up to b iff there exists a bijection
R from W1 to W2 such that for all w1 ∈W1 it holds that (i) ∣w1∣ = ∣R(w1)∣ and (ii) for all i ∈ {1, . . . , ∣w1∣} it
holds that b(w1(i)) = R(w1)(i). ⌟

By LTL[κ], we denote the set of all LTL-Formulae [1, 16] (without the next operator) over a set κ that are
given by the following expression:

ϕ ∶∶= true ∣K ∣ ¬ψ ∣ ψ1 ∨ ψ2 ∣ ψ1 U ψ2, where K ∈ κ and ψ,ψ1, ψ2 ∈ LTL[κ].

Let ϕ ∈ LTL[κ] and w be a κ-trace. Then, w satisfies ϕ, written w ⊧ ϕ, iff ϕ = true or:
� ϕ =K, K ∈ κ, and K ∈ w(1),
� ϕ = ¬ψ, and w /⊧ ψ,
� ϕ = ψ1 ∨ ψ2, and there exists i ∈ {1,2}: w ⊧ ψi, or
� ϕ = ψ1 U ψ2, and there exists k ∈ {1, . . . , ∣w∣} with w[k⟩ ⊧ ψ2 and w[i⟩ ⊧ ψ1 for all i ∈ {1, . . . , k − 1}.

3https://github.com/Isotactics/deciding-isotactics
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Other Boolean connectives, e.g., ∧, ⇒, and ⇔, can be obtained from ¬ and ∨ in the standard way. As
usual, the until operator (U) can be used to define temporal modalities F (eventually) and G (globally). In
particular, F ψ ∶= true U ψ and G ψ ∶= ¬F ¬ψ.

Finite State Machines. We rely on a common notion of finite state machines [9, 19]:

Definition 2.2 (Finite State Machine). A finite state machine (FSM) is a 5-tuple S ∶= (Q,Λ,Ð→, qini , F ),
where Q is a finite set of states, Λ is a set of labels, Q and Λ are disjoint, Ð→ ⊆ Q ×Λ ×Q is the transition
relation, qini ∈ Q is the initial state, and F ⊆ Q is the set of final states. ⌟

We say that S is defined over Λ. By p λÐ→q, where p, q ∈ Q and λ ∈ Λ, we denote the fact that (p, λ, q) ∈ Ð→.
We say that S accepts a word w ∈ Λ∗, iff (i) w is the empty word, i.e., w = ε, and qini ∈ F , or (ii) there exists
a sequence ρ ∈ Q∗ of states of length ∣w∣ + 1, such that ρ(1) = qini , ρ(∣w∣ + 1) ∈ F , and for all i ∈ {1, . . . , ∣w∣} it
holds that ρ(i) w(i)ÐÐ→ρ(i + 1); we refer to a word accepted by S as a run of S.

By L(S), we denote the set of all runs of S, i.e., the language of S. Two FSMs S1 and S2 are language-
equivalent iff L(S1) = L(S2). Two FSMs are illustrated in Figure 1, using common notation. For instance,
FSM m1 ∶= (Q,Λ,Ð→, qini , F ) has three states, Q = {1, 2, 3}, with the initial state qini = 1 and the set of final
states F = {3}. Its set of labels is Λ = {a, b, c, d, e} and its transition relation is defined by 1 aÐ→1, 1 bÐ→2, 2 cÐ→1,
1 dÐ→3, and 3 eÐ→3.

3. Equivalence of Aligned Systems

We consider the behaviour of a system in terms of interleaving, linear time semantics, i.e., as a set of
runs, where a run is a finite sequence over a set of labels. A run is produced by a system model, such as an
FSM, Petri net, or Turing machine. Against the background of describing the behaviour of systems, a label
often represents an action. However, other interpretations are possible: A label could represent a state, a
state predicate, a configuration, or a similar concept. The basis for aligning system models comprises:

1. Grouping of labels. Labels that shall be considered jointly when comparing the behaviour of systems
are part of a single group. The groups may overlap, i.e., a label may be a member of more than
one group. Intuitively, this corresponds to different interpretations of a single label. For instance, in
Figure 1, the action ‘s: Set customer for order’ can be interpreted together with action ‘v: Reset
customer details’ as the sheer retrieval of customer data, whereas with actions ‘w,x: Assign order’,
it relates to processing of a purchase order. One can ‘eliminate’ labels by not assigning them to any
group. The respective labels are then not further considered in the verification of equivalence.

2. Relating the groups of one model with the groups of another model by means of a binary relation,
called alignment. The alignment thereby defines a structural relation between groups of labels for
which occurrences shall be considered as equivalent. Referring to Figure 1, as detailed above already,
the functionality of action ‘a: Fetch customer data’ in model m1 is reflected in the functionality behind
two actions, ‘s: Set customer for order’ and ‘v: Reset customer details’ in model m2.

Based thereon, one can assess behavioural equivalence of two models by:

1. Abstracting each model based on the groups. The idea here is that the behaviour of a system is no
longer considered in terms of runs over a set of labels, but in terms of runs over groups. For two runs
of our running example, this abstraction is illustrated in Figure 2, in terms of the traces w1 and w2

that are induced by the alignment.
2. Verifying whether, according to the alignment, the abstract models are behaviourally equivalent. That

is, it is checked whether two systems show the same behaviour once the latter is interpreted in terms
of runs over groups. For the example in Figure 2, we see that indeed, both runs describe the same
behaviour of first handling customer data, which is followed by the setup of payment details, before the
management of the purchase order.

Based on the above intuition, this section develops the formalisation of the proposed equivalence notion:
We first define groupings and alignments (Section 3.1). Based thereon, we clarify the notions needed to
abstract a model based on groups (Section 3.2), which are then used to verify equivalence (Section 3.3).
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Def. 3.3

Def. 3.4

Def. 3.5
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Figure 3. The main concepts illustrated using the runs from Figure 2: For i ∈ {1, 2}, ri is a run of mi from Figure 1, wi is the
trace of ri, and θi is a tactic of wi. The traces w1 and w2 are aligned by tactics θ1 and θ2 because {a} & {s, v}, {b, c} & {t, u}
and {d, e} & {s,w, x}. Another tactic of w2 is θ′2 = {{s, v}}{{t, u}}{{s, v}}{{s,w, x}}. However, w1 and w2 are not aligned by
θ1 and θ′2, because the second {{s, v}} in θ′2 does not have a counterpart in θ1. In fact, θ1 and θ2 is the only combination of
tactics aligning w1 and w2. Hence, to align w1 and w2, the action s has to be resolved once as {{s, v}} and once as {{s,w, x}}.

Finally, we elaborate on how behavioural properties of systems, defined in LTL, shall be interpreted in the
context of an alignment (Section 3.4).

3.1. Groupings and Alignments

This section defines a grouping of a set of labels and an alignment between sets of labels. Intuitively,
a grouping is a collection of sets of labels, in which every set encodes a group of actions of a system that
shall be considered together in some behavioural analysis. An alignment specifies correspondences between
groups of actions of two systems, thereby establishing which groups of labels relate to the same functionality
described by the system models.

Definition 3.1 (Grouping).A grouping of a set of labels Λ is a set κ⊆℘>0(Λ). A set K ∈κ is a κ-group of Λ.⌟
Referring to the labels of the FSMs in Figure 1, e.g., γ1 ∶= {{a},{b, c},{d, e}} and γ2 ∶= {{s, v},{t, u},{s,w, x}}
are groupings of the sets of labels Γ1 ∶= {a, b, c, d, e} and Γ2 ∶= {s, t, u, v,w, x}, respectively. Given a
grouping κ of Λ and a label λ ∈ Λ, by Gκ(λ) we denote the set of all κ-groups that contain λ, i.e.,
Gκ(λ) ∶= {K ∈ κ ∣ λ ∈K}. For instance, it holds that Gγ2(s) = {{s, v},{s,w, x}}, which in the example relates
to the different interpretations of action ‘s: Set customer for order’, either in the context of retrieving the
customer data or related to the processing of a purchase order.

Definition 3.2 (Alignment). For i ∈ {1,2}, let Λi be a set of labels, and let κi ⊆ ℘>0(Λi) be a grouping of
Λi. Then, an alignment between Λ1 and Λ2 is a relation & ⊆ κ1 × κ2, written & ∶ Λ1 ⊗Λ2, which relates the
κ1-groups of Λ1 with the κ2-groups of Λ2.

Every alignment & induces groupings i& ∶= {Ki ∈ ℘>0(Λi) ∣K1 &K2} of Λi, i ∈ {1,2}. ⌟
For example, {({a},{s, v}), ({b, c},{t, u}), ({d, e},{s,w, x})} ⊆ γ1 × γ2 is an alignment between Γ1 and

Γ2 used in Figure 1; it induces groupings γ1 and γ2 proposed above. As mentioned above, this alignment
specifies that action a in model m1 corresponds to actions s and v in model m2. Furthermore, according to
this alignment, actions b and c correspond to actions t and u, and actions d and e correspond to actions s, w,
and x.

3.2. Comparing Runs based on Tactics

This section proposes a method for comparing runs of systems based on their tactics induced by alignments.
In the remainder of this section, we will illustrate the essential concepts using the initial example of the state
machines in Figure 1 and their runs depicted in Figure 2. This example is extended in Figure 3, which also
points to the respective definitions in this section.

Let Λ be a set of labels, and let κ be a grouping of Λ. Every run σ ∈ Λ∗ induces the κ-trace w ∶=
Gκ(σ(1)) . . .Gκ(σ(∣σ∣)). Then, the κ-induced trace of σ is a sequence of sets of κ-groups obtained from w by
removing all its elements that are equal to ∅ without changing the order of the remaining elements.

6
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Definition 3.3 (Induced Trace). Let Λ be a set of labels, let κ be a grouping of Λ, and let Tκ ∶ Λ∗ → ℘>0(κ)∗
be given by:

� Tκ(ε) ∶= ε.

� Let σ ∈ Λ∗, λ ∈ Λ. Then, Tκ(σλ) ∶=
⎧⎪⎪⎨⎪⎪⎩

Tκ(σ)Gκ(λ) if Gκ(λ) /= ∅,
Tκ(σ) otherwise.

Given a run σ ∈ Λ∗, Tκ(σ) is the κ-induced trace of σ. ⌟

As an example, we consider groupings of labels γ1 ∶= {{a},{b, c},{d, e}} and γ2 ∶= {{s, v},{t, u},{s,w, x}} as
defined in Section 3.1. Also, let r1 ∶= abcde be a run of model m1, which describes that after fetching some
customer data, a payment method is entered and stored, after which a purchase order is created and updated.
Run r2 ∶= susx of model m2, in turn, describes a situation in which a customer of an order is set initially,
after which the payment details are modified, so that the customer data of the order needs to be set again,
before the order is eventually assigned. Then, {{a}}{{b, c}}{{b, c}}{{d, e}}{{d, e}} is the γ1-induced trace
of r1, while {{s, v},{s,w, x}}{{t, u}}{{s, v},{s,w, x}}{{s,w, x}} is the γ2-induced trace of r2, see Figure 3.

We compare traces based on tactics. Intuitively, a tactic represents a specific interpretation of the run of
a system in terms of specific groups. While an induced trace describes all possible interpretations of a run, a
tactic requires to choose among them. Let κ be a grouping of a set of labels Λ, and let w ∈ ℘>0(κ)∗ be a
κ-trace. A tactic θ of w selects K ∈ w(i) for each position i of w.

Definition 3.4 (Tactic). A tactic of a κ-trace w ∈ ℘>0(κ)∗, where κ is a finite set, is a κ-trace θ ∈ ℘=1(κ)∗
such that ∣θ∣ = ∣w∣ and θ(i) ⊆ w(i) for all i ∈ {1, . . . , ∣w∣}. ⌟

Continuing with our running example, the γ1-induced trace Tγ1(abcde) has only a single tactic, which is
illustrated in Figure 3. The γ2-induced trace Tγ2(susx), in turn, has four tactics:

� θ′2 ∶= {{s, v}}{{t, u}}{{s, v}}{{s,w, x}},
� θ2 ∶= {{s, v}}{{t, u}}{{s,w, x}}{{s,w, x}},
� θ′′2 ∶= {{s,w, x}}{{t, u}}{{s, v}}{{s,w, x}}, and
� θ′′′2 ∶= {{s,w, x}}{{t, u}}{{s,w, x}}{{s,w, x}}.

The above tactics essentially stem from the different means to interpret the action ‘s: Set customer for order’
in the original run, and their combinations. Tactic θ2 ∶= {{s, v}}{{t, u}}{{s,w, x}}{{s,w, x}} is illustrated
in Figure 3.

Each tactic θ induces an equivalence relation =θ and a strict partial order <θ on the set {1, . . . , ∣θ∣} of
indices of θ. Two indices are equivalent, if θ selects the same K ∈ κ for them and all indices between them.
Two indices are ordered if they are ordered inside θ but are not equivalent.

Definition 3.5 (Tactic-induced Relations). Let θ be a tactic of a κ-trace w ∈ ℘>0(κ)∗, where κ is a finite
set. Then, =θ ⊆ {1, . . . , ∣θ∣} × {1, . . . , ∣θ∣} and <θ ⊆ {1, . . . , ∣θ∣} × {1, . . . , ∣θ∣} are defined as follows:

1. i =θ j iff for all k, l ∈ {1, . . . , ∣θ∣} such that min(i, j) ≤ k, ` ≤ max(i, j) it holds that θ(k) = θ(`).
2. i <θ j iff i < j and i /=θ j. ⌟

We note that =θ is an equivalence relation. We abbreviate ⟨i⟩=θ and {1, . . . , ∣θ∣}/=θ as ⟨i⟩θ and {1, . . . , ∣θ∣}/θ,
respectively. Let i, j ∈ {1, . . . , ∣θ∣}, such that i <θ j. Then, for all i′ ∈ ⟨i⟩θ and j′ ∈ ⟨j⟩θ, it holds that i′ <θ j′.
Hence, one can lift <θ from {1, . . . , ∣θ∣} to {1, . . . , ∣θ∣}/θ: For all i, j ∈ {1, . . . , ∣θ∣}, ⟨i⟩θ <θ ⟨j⟩θ iff i <θ j.

For example, the tactic θ2 ∶= {{s, v}}{{t, u}}{{s,w, x}}{{s,w, x}} induces the equivalence relation =θ2
given by {(1,1), (2,2), (3,3), (4,4), (3,4), (4,3)}; =θ2 induces three equivalence classes: {1}, {2}, and {3,4}.
Moreover, <θ2 is given by {(1,2), (1,3), (1,4), (2,3), (2,4)}. Thus, it holds that {1} <θ2 {2} <θ2 {3,4}.

Let & ∶ Λ1 ⊗Λ2 be an alignment. For i ∈ {1, 2}, let wi ∈ ℘( i&)∗. Intuitively, w1 and w2 are aligned if there
exist tactics θ1 and θ2 of w1 and w2, respectively, that can be aligned.

Definition 3.6 (Alignment of Tactics). Let & ∶ Λ1 ⊗Λ2 be an alignment. For i ∈ {1, 2}, let wi ∈ ℘( i&)∗, and
let θi be a tactic of wi. Tactics θ1 and θ2 are aligned by &, denoted by θ1 & θ2, iff there exists a bijection b
from {1, . . . , ∣θ1∣}/θ1 to {1, . . . , ∣θ2∣}/θ2 such that:

7
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1. for all i1 ∈ {1, . . . , ∣θ1∣} and i2 ∈ {1, . . . , ∣θ2∣} it holds that b(⟨i1⟩θ1) = ⟨i2⟩θ2 implies θ1(i1) & θ2(i2), and
2. for all i, j ∈ {1, . . . , ∣θ1∣} it holds that ⟨i⟩θ1 <θ1 ⟨j⟩θ1 implies b(⟨i⟩θ1) <θ2 b(⟨j⟩θ1). ⌟

We say that w1 and w2 are aligned by θ1 and θ2 w.r.t. &, and denote this by (θ1, θ2) ∶ w1 & w2.
To illustrate the alignment of tactics, we again refer to Figure 3. Here, the γ1-induced trace Tγ1(abcde)

and the γ2-induced trace Tγ2(susx) are aligned by tactics θ1 ∶= {{a}}{{b, c}}{{b, c}}{{d, e}}{{d, e}} and
θ2 ∶= {{s, v}}{{t, u}}{{s,w, x}}{{s,w, x}} w.r.t. the alignment from Figure 1; one can construct bijection
b ∶= {{1} ↦ {1},{2,3} ↦ {2},{4,5} ↦ {3,4}} from {1, . . . , ∣θ1∣}/θ1 to {1, . . . , ∣θ2∣}/θ2 . This bijection formally
encodes the intuition given earlier: In either system, customer data is handled first, before payment details
are set, which is followed by the management of the purchase order.

In contrast to the above example, Tγ1(ade) = {{a}}{{d, e}}{{d, e}} and Tγ2(susx) cannot be aligned.
Run ade represents the situation that handling of customer data is immediately followed by the management
of the purchase order. Unlike run susx, run ade thus does not include any actions related to the setup of the
payment details. Finally, illustrating that alignments abstract from cardinalities, for every n ∈ N it holds that
Tγ1(bc . . . bc´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n times

d) and Tγ2(tw) can be aligned. Intuitively, this means that entering and storing the payment

method repeatedly according to model m1 is equivalent to a single selection of payment details in model m2.

3.3. Tactic Coverage and Isotactics

We propose to compare two collections of traces based on tactic coverage and isotactics relations. The
idea is that a collection of traces is “covered” by another collection of traces if for every trace in this collection
one can find a trace in the other collection such that the tactics of these two traces are aligned.

Definition 3.7 (Tactic Coverage and Isotactics).
Let & ∶ Λ1 ⊗Λ2 be an alignment. For i ∈ {1,2}, let Wi be a set of i&-traces.

1. W1 and W2 are in the (interleaving) tactic coverage relation w.r.t. &, denoted by W1 ⩿& W2, iff for
every trace w1 ∈W1 there exists a trace w2 ∈W2 such that there exist tactics θ1 and θ2 of w1 and w2,
respectively, such that (θ1, θ2) ∶ w1 & w2.

2. W1 and W2 are in the (interleaving) isotactics relation w.r.t. &, denoted by W1 ≑&W2, iff W1 ⩿& W2

and W2 ⩿&−1 W1. ⌟

One can compare runs based on their induced traces, i.e., based on their abstractions induced by the alignment.
For i ∈ {1,2}, let Λi be a set of labels, let Σi ⊆ Λ∗

i be a set of runs, and let & ∶ Λ1 ⊗Λ2 be an alignment. We
write Σ1 ⩿& Σ2 and Σ1 ≑& Σ2 to denote the facts that T 1&(Σ1) ⩿& T 2&(Σ2) and T 1&(Σ1) ≑& T 2&(Σ2), respectively.

For our running example in Figure 1, one can verify that for every γ1-induced trace w1 of m1, there exists
some γ2-induced trace w2 of m2 such that some tactics of w1 and w2 are aligned, and vice versa; this fact is
justified in Section 7. Note that groupings γ1 and γ2 are proposed in Section 3.1 and are the groupings used
to define alignment & in Figure 1. Hence, it holds that L(m1) ≑& L(m2) and we say that m1 and m2 are
isotactic w.r.t. &.

3.4. Alignments and LTL

To later explore the class of properties preserved by isotactics, we first need to review how such properties
shall be interpreted in the presence of groupings and alignments. Considering properties formalised in LTL,
there is a class of formulae that is of particular interest: Those for which the choice of tactics does not affect
its truth value, called tactic-invariant LTL formulae. Below, we provide a formal characterisation of these
formulae and how they are interpreted in the context of an alignment. This provides the basis to later show
that tactic-invariant LTL formulae are indeed preserved by isotactics.

Let Λ be a set of labels, let κ ⊆ ℘>0(Λ) be a grouping, let Σ ⊆ Λ∗, let σ ∈ Σ, and let ϕ ∈ LTL[κ]. Then,
σ satisfies ϕ w.r.t. κ, denoted by (σ,κ) ⊧ ϕ, iff Tκ(σ) ⊧ ϕ. For example, given run σ ∶= tvsx of model m2

in Figure 1, it holds that {{t, u}}{{s, v}}{{s, v},{s,w, x}}{{s,w, x}} is the γ2-induced trace of σ, where
γ2 is defined in Section 3.1. Then, for sample formula ϕ ∶= ({s, v} ∨ {t, u})U {s,w, x}, we have (σ, γ2) ⊧ ϕ.
Similarly, Σ satisfies ϕ w.r.t. κ, denoted by (Σ, κ) ⊧ ϕ, iff for every σ ∈ Σ it holds that (σ,κ) ⊧ ϕ.
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Each tactic θ of a κ-trace w is a κ-trace. Thus, every formula ϕ ∈ LTL[κ] can be evaluated over both w
and θ. We call formula ϕ ∈ LTL[κ] tactic-invariant, if for every trace w it holds that the truth value of ϕ
over w and over every tactic θ of w is the same.

Definition 3.8 (Tactic-Invariant LTL-Formula). Let Λ be a set of labels and let κ ⊆ ℘>0(Λ) be a grouping
of Λ. An LTL-formula ϕ ∈ LTL[κ] is tactic-invariant w.r.t. Λ and κ, iff for every w ∈ Tκ(Λ∗) and every tactic
θ of w it holds that w ⊧ ϕ iff θ ⊧ ϕ. ⌟

For instance, consider the alignment & from Figure 1, and these three LTL[ 2&]-formulae:

ϕ1 ∶= {t, u}U ({s, v} ∨ {s,w, x}), ϕ2 ∶= ¬{s, v} ∨ ¬{s,w, x}, and ϕ3 ∶= ¬ϕ2.

Clearly, ϕ1 is tactic-invariant: The satisfying 2&-induced traces are of the form w1w2w3 where w1 is an element
in {{{t, u}}}∗, e.g., w1 = ε or w1 = {{t, u}}{{t, u}}, w2 is a non-empty subset of {{s, v},{s,w, x}}, and w3

is an arbitrary 2&-induced trace. The tactics of such a trace w1w2w3 are of the form θ1θ2θ3, where θ1 = w1

(because w1 is a sequence of singleton sets), θ2 is either {{s, v}} or {{s,w, x}}, and θ3 is any tactic of w3.
Because θ1 is a sequence of {{t, u}} and θ2 satisfies {s, v} ∨ {s,w, x}, θ1θ2θ3 satisfies ϕ1. Similarly, we argue
that every ϕ-satisfying tactic of an arbitrary 2&-induced trace w is of the form θ1θ2θ3, and we can show that
w is then also of the form w1w2w3 as above, yielding satisfaction of ϕ1. In contrast to that, ϕ2 and ϕ3 are
not tactic-invariant: As proof, we take the 2&-induced trace w = {{s, v},{s,w, x}} and tactic θ = {{s, v}} of w.
Then, w /⊧ ϕ2 but θ ⊧ ϕ2, and w ⊧ ϕ3 and θ /⊧ ϕ3.

Given an alignment & ∶ Λ1 ⊗Λ2 that relates the κ1-groups of Λ1 with the κ2-groups of Λ2, every formula
ϕ1 ∈ LTL[κ1] is aligned to a similar formula ϕ2 ∈ LTL[κ2]. Formulae ϕ1 and ϕ2 are aligned if ϕ1 and ϕ2

have the same structure, and ϕ2 replaces each disjunction of atomic propositions from ϕ1 with an aligned
disjunction of atomic propositions. Intuitively, two aligned formulae define the same property (modulo the
alignment).

Definition 3.9 (Alignment of LTL-Formulae). Let & be an alignment. LTL-Formulae ϕ1 ∈ LTL[ 1&] and
ϕ2 ∈ LTL[ 2&] are aligned by &, denoted by ϕ1 & ϕ2, iff at least one of the following holds:

� For i ∈ {1,2}, ϕi = ⋁Ki∈KiKi, where Ki ⊆ i& and (K1 × 2&) ∩ & = ( 1& ×K2) ∩ &.
� For i ∈ {1,2}, ϕi = ¬ψi and ψ1 & ψ2.
� For i ∈ {1,2}, ϕi = ψi ∗ ψ′i, where ∗ ∈ {∨,U}, ψ1 & ψ2, and ψ′1 & ψ′2. ⌟

For example, given formulae ϕ1 ∶= ({a} ∨ {b, c})U {d, e} and ϕ2 ∶= ({s, v} ∨ {t, u})U {s,w, x}, it holds that
ϕ1 & ϕ2, where & is the alignment from Figure 1.

4. Main Results

This section summarizes the main results of this paper. For each proposed formal statement, we refer to
the Lemmata that proves the statement.

First, we turn to one of the fundamental questions regarding an isotactics notion: is it a proper
generalisation of the well-established behavioural equivalences? That is, once an alignment collapses to a
bijection between the labels of two sets of runs, isotactics shall be grounded in a well-established notion of
behavioural equivalence. This is indeed the case, as the following theorem demonstrates a relation between
isotactics and trace equivalence—a widely established notion of behavioural equivalence—for repetition-free
sets of runs.

Theorem 4.1 (Trace equivalence and isotactics for simple alignments and repetition-free runs). For i∈{1, 2},
let Λi be a set of labels and let Σi ⊆ Λ∗

i be repetition-free. Let b be a bijection from Λ1 to Λ2, and let
& ∶= {({λ},{b(λ)}) ∣ λ ∈ Λ1}. Then, the following statements are equivalent:

1. T 1&(Σ1) and T 2&(Σ2) are trace equivalent up to b.

2. Σ1 ≑& Σ2. ⌟
Proof. Follows from Lemmata 5.1 and 5.2. ◾
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Second, we focus on the question of which system properties are preserved by isotactics. An answer to this
question is given for the aforementioned class of tactic-invariant LTL-formulae. Once the choice of a tactic
does not affect the truth value of a formula, it is indeed preserved by the proposed notion of equivalence.

Theorem 4.2 (Tactic-invariant LTL-formulae are preserved). Let & ∶ Λ1⊗Λ2 be an alignment. For i ∈ {1, 2},
let Σi ⊆ Λ∗

i and let ϕi ∈ LTL[ i&] be tactic-invariant w.r.t. Λi and i&. Let ϕ1 & ϕ2 and let Σ1 ≑& Σ2. Then, it
holds that (Σ1,

1&) ⊧ ϕ1 iff (Σ2,
2&) ⊧ ϕ2. ⌟

Proof. Follows from Definition 3.7 and Lemma 6.1. ◾

Theorem 4.2 implies that two isotactic (w.r.t. an alignment) FSMs have the same tactic-invariant properties
(modulo the alignment). In order to use this result, it must be decidable whether a given LTL-formula is
tactic-invariant. The next theorem establishes that this is indeed the case.

Theorem 4.3 (Tactic-invariance of LTL-formula is decidable). Let Λ be a set of labels, let κ ⊆ ℘>0(Λ) be a
grouping, and let ϕ ∈ LTL[κ]. Then, the following problem is decidable: To decide whether ϕ is tactic-invariant
w.r.t. Λ and κ. ⌟
Proof. Follows from Lemmata 6.2 and 6.3. ◾

Finally, given two FSMs, it is decidable whether their languages are in the interleaving isotactics relation,
i.e., it is decidable whether the FSMs are isotactic.

Theorem 4.4 (Isotactics is decidable for FSMs). For i ∈ {1,2}, let Λi be a set of labels and let Si be an
FSM over Λi. Let & ∶ Λ1 ⊗Λ2 be an alignment. Then, the following problem is decidable: To decide whether
L(S1) and L(S2) are in the interleaving isotactics relation w.r.t. &, i.e., to decide whether it holds that
L(S1) ≑& L(S2). ⌟
Proof. Follows from Lemmata 7.8 and 7.9. ◾

This paper focuses on the definition of isotactics, its preserved properties, and the decidability of the
respective verification problem. However, the constructions presented to prove Theorem 4.4 also reveal a
decision procedure for isotactics. We implemented this procedure in an open-source tool, which enables a
first practical application of isotactics.

5. Conditional Coincidence of Trace Equivalence and Isotactics

This section lists two statements that correspond to the two directions of the equivalence stated in
Theorem 4.1. These statements justify the proposed conditional coincidence of trace equivalence and
isotactics. Let & ∶ Λ1 ⊗ Λ2 be an alignment such that & is a bijection from the singletons over Λ1 to the
singletons over Λ2. In the proofs, we exploit the fact that every trace w ∶= T i&(σ), where i ∈ {1, 2} and σ ∈ Λ∗

i ,
is a sequence of singletons and, thus, has exactly one tactic, namely w.

First, we show that trace equivalence implies isotactics.

Lemma 5.1. For i ∈ {1, 2}, let Λi be a set of labels and let Σi ⊆ Λ∗
i . Let b be a bijection from Λ1 to Λ2, and

let & ∶= {({λ},{b(λ)}) ∣ λ ∈ Λ1}. If T 1&(Σ1) and T 2&(Σ2) are trace equivalent up to b, then Σ1 ≑& Σ2. ⌟

Second, we demonstrate the converse of Lemma 5.1 for the case when Σ1 and Σ2 are repetition-free. If Σ1

and Σ2 are repetition-free, then the traces induced by the runs in Σ1 and Σ2 are repetition-free as well.
Consequently, every equivalence class of an equivalence relation induced by a tactic of any of the induced
traces is a singleton. Our proof of the next lemma draws on this observation.

Lemma 5.2. For i∈{1, 2}, let Λi be a set of labels and let Σi⊆Λ∗
i be repetition-free. Let b be a bijection from Λ1

to Λ2, and let &∶={({λ},{b(λ)}) ∣ λ ∈ Λ1}. If Σ1≑&Σ2, then T 1&(Σ1) and T 2&(Σ2) are trace equivalent up to b. ⌟

The proofs of Lemmata 5.1 and 5.2 are in Appendix A.
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6. Property Preservation

Two isotactic collections of traces enjoy the same tactic-invariant LTL properties, cf. Theorem 4.2, while
the problem of checking whether a given LTL-formula is tactic-invariant is decidable, cf. Theorem 4.3. These
results are due to the lemmata proposed in this section; the proofs of all the statements proposed below are
in Appendix A. Next, we argue that for any two aligned traces w1 and w2, it holds that w1 ⊧ ϕ1 iff w2 ⊧ ϕ2,
where ϕ1 and ϕ2 are aligned tactic-invariant LTL-formulae.

Lemma 6.1. Let & ∶ Λ1 ⊗Λ2 be an alignment. For i ∈ {1,2}, let σi ∈ Λ∗
i , wi ∶= T i&(σi), θi be a tactic of wi,

and let ϕi ∈ LTL[ i&] be tactic-invariant w.r.t. Λi and i&. Let ϕ1 and ϕ2 be aligned by &, i.e., ϕ1 & ϕ2, and let
(θ1, θ2) ∶ w1 & w2. Then, it holds that w1 ⊧ ϕ1 iff w2 ⊧ ϕ2. ⌟

Consider alignment & from Figure 1, LTL[ 1&]-formulae ψ1, ψ2, and ψ3, and LTL[ 2&]-formulae ϕ1, ϕ2, and ϕ3:

ψ1 ∶= {b, c}U ({a} ∨ {d, e}), ψ2 ∶= ¬{a} ∨ ¬{d, e}, ψ3 ∶= ¬ψ2,

ϕ1 ∶= {t, u}U ({s, v} ∨ {s,w, x}), ϕ2 ∶= ¬{s, v} ∨ ¬{s,w, x}, ϕ3 ∶= ¬ϕ2.

For all i ∈ {1,2,3}, ψi and ϕi are aligned by &, i.e., it holds that ψi & ϕi. It is easy to see that ψ1, ψ2,
and ψ3 are tactic-invariant; note that groups in 1& are pairwise disjoint. Recall from Section 3.4 that ϕ1 is
tactic-invariant. Therefore, ψ1 and ϕ1 are ‘preserved’ for the aligned traces. Let w1 be a 1&-induced trace of
the form {{b, c}}∗({{a}}∣{{d, e}}). Then, it holds that w1 ⊧ ψ1. Let w2 be a 2&-induced trace, such that w1

and w2 can be aligned w.r.t. &. Then, w2 is of the form {{t, u}}∗({{s, v}}∣{{s,w, x}}∣{{s, v},{s,w, x}})+,
and, thus, it holds that w2 ⊧ ϕ1. Also, recall from Section 3.4 that ϕ2 and ϕ3 are not tactic-invariant. Next,
consider the 1&-induced trace w′

1 ∶= {{a}} and the 2&-induced trace w′
2 ∶= {{s, v},{s,w, x}}. Clearly, traces w′

1

and w′
2 can be aligned w.r.t. &. However, it holds that w′

1 ⊧ ψ2, w′
2 /⊧ ϕ2, w′

1 /⊧ ψ3, and w′
2 ⊧ ϕ3.

We reduce the problem of deciding tactic-invariance of a given LTL-formula to the problem of checking
language equivalence. To this end, we exploit the fact that every LTL-formula ϕ ∈ LTL[κ], where κ ⊆ ℘>0(Λ)
is a grouping, can be translated into a corresponding FSM Sϕ. Then, one should intersect the language of
Sϕ with the sets of traces and tactics over κ, respectively, and compare the results.

For the remainder of this section, we fix a grouping κ and an LTL-formula ϕ ∈ LTL[κ].
For some κ-trace w, we write Tactics(w) to denote the set of all tactics of w. Moreover, we introduce

the helper sets W ∶= {w ∈ Tκ(Λ∗) ∣ w ⊧ ϕ} and Θ ∶= {θ ∈ Tactics(w) ∣ w ∈W,θ ⊧ ϕ}, denoting the sets of all
ϕ-satisfying κ-induced traces, and ϕ-satisfying tactics of κ-induced traces in W , respectively. A tactic does not
carry sufficient information about its ‘origin’; there can exist two κ-induced traces w,w′ with common tactics,
i.e., Tactics(w) ∩ Tactics(w′) /= ∅. For instance, the 2&-induced traces w ∶= {{t, u}}{{s, v},{s,w, x}} and
w′ ∶= {{t, u}}{{s, v}} have the common tactic θ = w′. Therefore, for each tactic θ ∈ Tactics(w) of a κ-induced
trace w, we define the sequence θw ∈ (℘=1(κ) × ℘>0(κ))∗ of pairs of sets of groups by θw(i) ∶= (θ(i),w(i)),
i ∈ {1, . . . , ∣w∣}. That is, each element of θw at position i refers to the group chosen by tactic θ and the set of
groups this group has been chosen from. For instance, for the 2&-induced trace w ∶= {{t, u}}{{s, v},{s,w, x}}
and its tactic θ ∶= {{t, u}}{{s, v}}, it holds that θw = ({{t, u}},{{t, u}})({{s, v}},{{s, v},{s,w, x}}). We
refer to θw as the enriched version of tactic θ.

Based on the notion of θw, we define the sets Θ̂ ∶= {θw ∣ w ∈W,θ ∈ Tactics(w)} and Θ̂′ ∶= {θw ∣ θ ∈ Θ,w ∈
Tκ(Λ∗)} built from W and Θ, respectively. That is, Θ̂ contains the enriched versions of all the tactics of
ϕ-satisfying traces, and Θ̂′ contains the enriched versions of all the ϕ-satisfying tactics of arbitrary traces.

Next, we demonstrate that tactic-invariance coincides with equality of Θ̂ and Θ̂′: If ϕ is tactic-invariant,
then for every trace w and tactic θ ∈ Tactics(w), it holds that w ∈W iff θ ∈ Θ. Otherwise, there exist a trace
w and a tactic θ ∈ Tactics(w) such that w ∈W iff θ /∈ Θ.

Lemma 6.2. Θ̂ = Θ̂′ iff ϕ is tactic-invariant w.r.t. Λ and κ. ⌟

For example, consider the 2&-induced trace w ∶= {{s, v},{s,w, x}} and tactic θ ∶= {{s, v}} of w, yielding
θw = ({{s, v}},{{s, v},{s,w, x}}). As mentioned above, w /⊧ ϕ2 and w ⊧ ϕ3; note that w = w′

2. But, it holds
that θ ⊧ ϕ2 and θ /⊧ ϕ3. Assuming that ϕ = ϕ2, it holds that θw /∈ Θ̂; note that w /∈W . However, it holds that
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FSM S1

FSM S2

Alignment ⋈ Witness Graph 
W(S1,S2,⋈) Projection of 

Witness Graph to S2

L2(W(S1,S2,⋈))

Projection of 
Witness Graph to S1

L1(W(S1,S2,⋈))
∧ decision 

result

L1(W(S1,S2,⋈)) = T⋈(L(S1))1

L2(W(S1,S2,⋈)) = T⋈(L(S2))2

Figure 4. A schematic view of the proposed approach for deciding interleaving isotactics.

θw ∈ Θ̂′, because θ ⊧ ϕ2. Similarly, assuming thatϕ = ϕ3, one can check that θw ∈ Θ̂ and θw /∈ Θ̂′. According
to Lemma 6.2, these facts confirm that ϕ2 and ϕ3 are not tactic-invariant.

We reduce the decision of whether Θ̂ = Θ̂′ to the check of language equivalence of FSMs, thus demonstrating
decidability of the equality and, consequently, of tactic-invariance. The idea is to construct FSMs ŜΘ and
Ŝ′Θ that accept Θ̂ and Θ̂′, respectively. To this end, we construct FSMs SW and SΘ that accept W and Θ,
respectively; here, we exploit the fact that ϕ can be encoded as FSM Sϕ. Then, we ‘unfold’ the transitions of

SW and SΘ to obtain ŜΘ and Ŝ′Θ, respectively. Finally, we decide Θ̂ = Θ̂′ by deciding language equivalence

of ŜΘ and Ŝ′Θ.

Lemma 6.3. It is decidable whether Θ̂ and Θ̂′ are equal sets. ⌟

Assuming that ϕ = ϕ1, Appendix B exemplifies the construction of Sϕ, SW , SΘ, ŜΘ, and Ŝ′Θ.
Deciding tactic-invariance of ϕ requires at most exponential space w.r.t. to the size of ϕ and &: The FSM

Sϕ can be computed in EXPTIME and has exponential size w.r.t. ϕ and &. The FSMs ŜΘ and Ŝ′Θ can be
computed from Sϕ in polynomial time; the resulting FSMs having exponential size. Finally, the equivalence
check requires polynomial space w.r.t. the size of the exponentially-sized FSMs.

7. Deciding Isotactics

In this section, we demonstrate the decidability of interleaving isotactics for languages of FSMs S1 and
S2 w.r.t. an alignment &. The idea of the proposed approach is shown in Figure 4. It comprises three steps:

1. Compute the ‘product ’ W(S1, S2,&) of S1 and S2 w.r.t. &, called witness graph.

2. For i ∈ {1,2}, compute the ‘projection’ Li(W(S1, S2,&)) of W(S1, S2,&), describing the behaviour of
Si that can be mirrored by Sj , j ∈ {1,2}, j /= i.

3. Reduce deciding interleaving isotactics to a language equivalence check, that is, the equality of the
projection Li(W(S1, S2,&)) and the trace set T i&(L(Si)).

Again, the proofs of the main formal statements proposed in this section are in Appendix A.

Determinism. To simplify subsequent discussions, we assume that S1 and S2 are deterministic w.r.t. 1& and
2&, respectively. Here, determinism is defined w.r.t. a given grouping, and requires the absence of labels which
do not participate in any group.

Definition 7.1 (Deterministic FSM). An FSM S ∶= (Q,Λ,Ð→, qini , F ) is deterministic w.r.t. a grouping
κ of Λ, iff for all states q ∈ Q and for all transitions q

λ1Ð→q1 and q
λ2Ð→q2 of S: If both Gκ(λ1) /= ∅ and

Gκ(λ1) = Gκ(λ2), then q1 = q2. ⌟

The FSMs m1 and m2 in Figure 1 are deterministic w.r.t. to 1& and 2&, respectively. A counter example for
determinism would be if in m1 one adds a fresh state 4 and a fresh transition 1 cÐ→4. The FSM obtained in
this way is nondeterministic w.r.t. 1&.

Given an FSM S and a grouping, one can always construct a deterministic FSM w.r.t. the grouping that
describes the same set of induced traces as S. The construction can be accomplished using the powerset
construction [21].
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Lemma 7.2. Let S ∶= (Q,Λ,Ð→, qini , F ) be an FSM, and let κ be a grouping of Λ. There exists an FSM S′

such that: (i) Tκ(L(S)) = Tκ(L(S′)), and (ii) S′ is deterministic w.r.t. κ. ⌟

For the remainder of this section, we fix an alignment & ∶ Λ1 ⊗Λ2, and two FSMs Si ∶= (Qi,Λi,Ð→i, qinii , Fi),
i ∈ {1,2}, such that Si is deterministic w.r.t. i&.

Matches. The idea behind the witness graph W(S1, S2,&) is to construct a finite representation of all possible
ways to align the traces of S1 with the traces of S2. To this end, we build a product of S1 and S2 where
each product state (q1, q2) is additionally distinguished by a set M of possible matches. Here, a match is
a pair (K1,K2) of two aligned groups K1 and K2, indicating that there exist traces w1 and w2 yielding q1

and q2, respectively, which can be aligned by some tactics θ1 and θ2 satisfying θi(∣θi∣) = {Ki}, for i ∈ {1,2}.
The edges of W(S1, S2,&) are labelled with pairs (K1,K2), where each Ki, i ∈ {1,2}, is a set of groups. A
non-empty set of groups Ki indicates an action of Si which is abstracted by i& to Ki. In contrast to that,
Ki = ∅ indicates that Si did not ‘move’.

To simplify further discussions, we introduce the notation M + (K1,K2) for a set M of matches and a
pair (K1,K2) of sets of groups. Intuitively, M + (K1,K2) describes the set of possible result matches if we
start from M , and both FSMs act according to (K1,K2).

Let M ⊆ & and let Ki ⊆ i&, i ∈ {1,2}, such that K1 ∪K2 /= ∅. Then, M + (K1,K2) is defined as follows:

M+(K1,K2) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(K1 ×K2) ∩ & if M = ∅
{(G1,G2) ∈ ((K1 ×K2) ∩ &) ∖M ∣ ∃(G′

1,G
′
2) ∈M ∶ G1 /= G′

1 ∧G2 /= G′
2} if K1 /= ∅ ∧K2 /= ∅,

{(G1,G2) ∈M ∣ ∃ i ∈ {1,2} ∶ Gi ∈ Ki} otherwise.

Consider m1, m2, and & as defined in Figure 1, and let M ∶= {({b, c},{t, u}), ({d, e},{s,w, x})}. Then, it
holds that M + ({{a},{b, c}},{{s, v},{s,w, x}}) = {({a},{s, v})}, M + ({{b, c}},∅) = {({b, c},{t, u})}, and
M + ({{b, c}},{{t, u}}) = ∅.

The Witness Graph. Next, we define the witness graph W(S1, S2,&) based on the possible transitions in
S1 and S2. We start from the initial state, and the empty set of matches. Then, we add nodes and edges
according to the respective transition relations and the alignment.

Definition 7.3 (Witness Graph). The witness graph W(S1, S2,&) of S1 and S2 w.r.t. an alignment & is
the least edge-labelled graph (V,E), where V ⊆Q1×Q2×℘(&) and E⊆V ×℘( 1&)×℘( 2&)×V , such that:

1. (qini1 , qini2 ,∅) ∈ V .
2. Let v = (q1, q2,M) ∈ V .

(a) For i ∈ {1,2}, let qi
λiÐ→iq′i be a transition of Si, Ki = G i&(λi), and M ′ =M + (K1,K2), such that

M ′ /= ∅. Then, it holds that v′ ∶= (q′1, q′2,M ′) ∈ V and (v,K1,K2, v
′) ∈ E.

(b) Let i, j ∈ {1,2}, i ≠ j. Let qi
λiÐ→iq′i be a transition of Si, Ki = G i&(λi), Kj = ∅, q′j = qj , and M ′ =

M + (K1,K2), such that M ′ /= ∅. Then, it holds that v′ ∶= (q′1, q′2,M ′) ∈ V and (v,K1,K2, v
′) ∈ E.

Let e = (v,K1,K2, v
′) ∈ E. For i ∈ {1,2}, e[i] ∶= Ki and e[i]/=∅ ∶=

⎧⎪⎪⎨⎪⎪⎩

e[i] e[i] /= ∅,
ε otherwise.

⌟

Let v0 . . . vn ∈ V ∗ such that v0 = (qini1 , qini2 ,∅). Let π = e1 . . . en ∈ E∗ such that π(i) = (vi−1,Ki1,Ki2, vi) for all
i ∈ {1, . . . , n}. Then, π is a path of W(S1, S2,&) resulting in vn. We define π[i] ∶= π(1)[i] . . . π(n)[i], and
π[i]/=∅ ∶= π(1)[i]/=∅ . . . π(n)[i]/=∅, where i ∈ {1,2}.

Figure 5 exemplifies the notion of the witness graph W(m1,m2,&) for the FSMs m1 and m2, and the
alignment & given in Figure 1. In the proposed notation, the outmost round brackets in the node labels
are omitted. For example, the topmost node in the figure is (1, I,∅), but we write 1, I,∅. Note that edge
labels are written in two lines (the first element is written above the second). We also omit the outmost
braces when depicting each of the non-empty elements of the label. For example, the edge from (1, I,∅) to
(1, II,{({a},{s, v})}) has label ({{a}},{{s, v},{s,w, x}}). However, in the figure, the corresponding edge
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1,I,Ø{d,e}
{s,v},{s,w,x}

3,IV,{({d,e},{s,w,x})}

   {d,e}
   Ø

3,II,{({d,e},{s,w,x})}

Ø
{s,w,x}

2,I,{({b,c},{t,u})}

1,III,{({b,c},{t,u})}

1,II,{({a},{s,v})}

{a}
{s,v},{s,w,x}

{d,e}
{s,w,x}

{b,c}
{t,u}

{d,e}
{s,w,x}

2,III,{({b,c},{t,u})}

{b,c}
{t,u}

{b,c}
Ø

1,I,{({a},{s,v})}
{a}

{s,v}

{d,e}
{s,v},{s,w,x}

Ø
{s,v},{s,w,x}

{b,c}
{t,u}

   {a}
   Ø

{b,c}
Ø

   {a}
   Ø

1,I,{({b,c},{t,u})}

{b,c}
Ø

{b,c}
Ø

{a}
{s,v}, {s,w,x}

{d,e}
{s,v},{s,w,x}

Ø
{t,u}

   {d,e}
   Ø

Ø
{t,u}

Figure 5. Witness graph for the FSMs and the alignment shown in Figure 1.

is labelled with {a} written above {s, v},{s,w, x}. Labels of the respective transitions in m1 and m2 are
printed in bold in the edge labels of the witness graph. Finally, if both m1 and m2 are in a final state, the
state names are also put in bold in the graph.

For example, Rule 2(a) in Definition 7.3 produces the edge labelled ({{a}},{{s, v},{s,w, x}}) from
node (1, I,∅) to node (1, II,{({a},{s, v})}: 1 aÐ→m11, I sÐ→m2II, G 1&(a) = {{a}}, G 2&(s) = {{s, v},{s,w, x}},

and ∅ + (G 1&(a),G 2&(s)) = {({a},{s, v})}. Rule 2(b) produces the edge labelled ({{b, c}},∅) from node

(2, III,{({b, c},{t, u})}) to (1, III,{({b, c},{t, u})}): 2 cÐ→m11, G 1&(c) = {{b, c}}, and {({b, c},{t, u})}+(G 1&(c),
∅) = {({b, c},{t, u})}. The sequence π of edges with respective labels ({{a}},{{s, v},{s,w, x}}), ({{b, c}},
{{t, u}}), ({{b, c}},∅) and (∅,{{t, u}}) from node (1, I,∅) to node (2, III,{({b, c},{t, u})}) is a path with
π[2] = {{s, v},{s,w, x}}{{t, u}}∅{{t, u}} and π[2]/=∅ = {{s, v},{s,w, x}}{{t, u}}{{t, u}}.

For illustration, we sketch an example producing non-singleton sets of matches: For i ∈ {1, 2}, let Ki and
K ′
i be groups with λi ∈Ki ∩K ′

i. Let &′ be an alignment with K1 &′ K2 and K ′
1 &K ′

2. For i ∈ {1,2}, let Si
be an FSM accepting the word λi. Then, W(S1, S2,&′) has an edge labelled ({K1,K

′
1},{K2,K

′
2}) from the

initial node to a node with matches {(K1,K2), (K ′
1,K

′
2)}.

Realisability. A pair (w1,w2) ∈ ℘( 1&)∗ × ℘( 2&)∗ is realisable iff there exists a path of W(S1, S2,&) that
represents w1 and w2, possibly also containing ∅.

Definition 7.4 (Realisable). For i ∈ {1,2}, let wi ∈ ℘( i&)∗. Then, (w1,w2) is realisable in W(S1, S2,&)
resulting in a node v iff there is a path π of W(S1, S2,&) resulting in v, such that π[i]/=∅ = wi, i ∈ {1,2}. ⌟

For example, let w1 ∶= T 1&(bca) = {{b, c}}{{b, c}}{{a}} and w2 ∶= T 2&(tv) = {{t, u}}{{s, v}}. Then, (w1,w2)
is realisable in the graph in Figure 5, resulting in node (1, I,{({a},{s, v})}). In contrast, the pair of traces
(T 1&(bc),w2) is not realisable.

We now show that realisability of (w1,w2) implies that w1 and w2 can be aligned.

Lemma 7.5. For i ∈ {1,2}, let wi ∈ ℘( i&)∗. Let (w1,w2) be realisable in W(S1, S2,&) resulting in a node
v = (q1, q2,M). For each (K1,K2) ∈ M , there exist a tactic θ1 of w1 and a tactic θ2 of w2, such that
(θ1, θ2) ∶ w1 & w2 and for all i ∈ {1,2}: ∣wi∣ > 0⇒ θi(∣wi∣) = {Ki}. ⌟

Because (w1,w2) is realizable, where w1 ∶=T 1&(bca)={{b, c}}{{b, c}}{{a}} and w2 ∶=T 2&(tv)={{t, u}}{{s, v}},
w1 and w2 can be aligned. To justify this fact, one can use tactics θ1 ∶= w1 and θ2 ∶= w2, and the bijection
{{1,2}↦{1},{3}↦{2}} from {1, . . . , ∣θ1∣}/θ1 to {1, . . . , ∣θ2∣}/θ2 .

We now show the converse, i.e., if w1 and w2 can be aligned, then (w1,w2) is realisable. The idea of the
proof is to construct a path that justifies that (w1,w2) is indeed realisable based on alignable tactics θ1 and
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A. Polyvyanyy, J. Sürmeli, and M. Weidlich / Theoretical Computer Science — Postprint (2018) 1–21 15

θ2 in the order of the aligned equivalence classes: Rule 2(a) creates an edge for every fresh pair of aligned
equivalence classes, while Rule 2(b) creates the edges for the remaining indices in these equivalence classes.

Lemma 7.6. For i ∈ {1, 2}, let σi be a prefix of some word in L(Si), and wi = T i&(σi). Let for i ∈ {1, 2}, θi be

a tactic of wi, such that (θ1, θ2) ∶ w1 & w2. Then, (w1,w2) is realisable resulting in some node v = (q1, q2,M)
with ∣w1∣ > 0⇒ ∣w2∣ = 0 ∧ (θ1(∣w1∣), θ2(∣w2∣)) ∈M . ⌟

For illustration, we again consider w1 ∶= T 1&(bca) = {{b, c}}{{b, c}}{{a}} and w2 ∶= T 2&(tv) = {{t, u}}{{s, v}},

which can be aligned by tactics θ1 ∶= w1 and θ2 ∶= w2, and bijection {{1,2} ↦ {1},{3} ↦ {2}}. One can
construct a path that justifies that (w1,w2) is realisable by using the bijection: {1,2} ↦ {1} yields that
one must start by first taking edge (θ1(1), θ2(1)) followed by edge (θ1(2),∅). Then, {3} ↦ {2} yields edge
(θ1(3), θ2(2)).

Projecting the Witness Graph. Intuitively, for i, j ∈ {1,2}, i ≠ j, we can conceive W(S1, S2,&) as an FSM,
where for each edge labelled (K1,K2), we only consider the action Ki of Si, i.e., we omit the actions of Sj :

Definition 7.7 (Witness Graph Projection). Let Π be the set of all paths of W(S1, S2,&) resulting in a
node (q1, q2,M), where q1 ∈ F1 and q2 ∈ F2. For i ∈ {1,2}, we define Li(W(S1, S2,&)) ∶= {π[i]/=∅ ∣ π ∈ Π}. ⌟

From Lemma 7.6 and Lemma 7.5, we get that Li(W(S1, S2,&)) describes the behavior of Si which can be
aligned to behavior of Sj . This enables us to reduce deciding isotactics to comparing Si to Li(W(S1, S2,&)).

Reducing Decidability of Isotactics to Language Equivalence. We reduce the problem of deciding isotactics of
L(S1) and L(S2) to two language equivalence checks, between the FSMs and the respective projections of
the witness graph.

Lemma 7.8. The following statements are equivalent:

1. L1(W(S1, S2,&)) = T 1&(L(S1)) and L2(W(S1, S2,&)) = T 2&(L(S2)).

2. L(S1) ≑& L(S2). ⌟

Because language equivalence is decidable for FSMs [21], we can also decide the first proposition of Lemma 7.8
by transforming W(S1, S2,&) into two FSMs: One with language L1(W(S1, S2,&)) and the other with
language L2(W(S1, S2,&)). The transformation basically comprises the projection of the edge labels to the
i-th component, i ∈ {1,2}, and the subsequent “removal” of ∅-transitions.

Lemma 7.9. For i ∈ {1,2}, the following problem is decidable:
To decide whether it holds that Li(W(S1, S2,&)) = T i&(L(Si)). ⌟

We conclude that deciding isotactics is in EXSPACE: If the FSMs are deterministic, W(S1, S2,&) has at most
∣Q1∣ ⋅ ∣Q2∣ ⋅ 2∣&∣ nodes; otherwise, determinisation of the FSMs yields a witness graph with at most 2∣Q1∣∣Q2∣∣&∣

nodes. W(S1, S2,&) can be computed in EXPTIME. Deciding language equivalence requires polynomial
space in the size of the FSMs.

8. Concluding Remarks

This paper proposed interleaving isotactics to assess behavioural equivalence of aligned models, presented
results on the properties it preserves, and proved decidability of the respective verification problems. The
constructions introduced in Section 7 to show decidability of isotactics, i.e., the witness graph and its
projections, give rise to a first decision procedure for isotactics. This procedure has been implemented and
is available in an open-source tool.4 It takes as input two FSMs and the definition of an alignment and
returns a Boolean result. It also enables the creation of visualisations of the constructed witness graph and
its projections and comes with exemplary input files that encode the running example of this paper.

4https://github.com/Isotactics/deciding-isotactics
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Having introduced a novel equivalence notion, we also reflect on potential causes for non-equivalence.
First and foremost, an action that is part solely of one model may lead to non-equivalence. In our model, this
situation may manifest when the label of such an action is related to itself in the alignment. As occurrences
of this label are limited to runs of one of the system models, they cannot be mirrored by any run of the
other model. Assessment of behavioural equivalence of system models often starts by hiding non-matching
actions, i.e., by making non-matching actions silent, or invisible. Then, models are compared based on the
remaining visible actions, see for example weak trace equivalence [11]. Isotactics is a generalization of (notions
like) weak trace equivalence. One can implement action hiding using the isotactics’ alignment relation, by
excluding the labels of non-matching actions from the alignment. Note that weak trace equivalence cannot
capture behavioural correspondence of an action in one model with two distinct mutually exclusive actions
in the other model. This correspondence, however, can be captured in an alignment relation and verified
using isotactics. Finally, the notion of behaviour inheritance suggests that when verifying an equivalence, in
addition to being hidden, an action can be blocked [2]. That is, the blocked action, and all the subsequent
actions, are considered to be not reachable. This idea, originally proposed in the context of branching
bisimulation, can be lifted to isotactics in a straightforward manner.

For system models that are not behaviourally equivalent, it is often relevant to quantify the discrepancies
in their behaviour. To this end, measures for behavioural similarity have been proposed for the different
semantics of system models, see [7, 8]. We foresee that the proposed notion of isotactics can be exploited
for the definition of similar measures. For instance, such new measures can aim to quantify the ratio of the
aligned groups of labels for which the behavioural projections are equivalent.
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A. Polyvyanyy, J. Sürmeli, and M. Weidlich / Theoretical Computer Science — Postprint (2018) 1–21 17

[15] Doron A. Peled and Thomas Wilke. Stutter-invariant temporal properties are expressible without the next-time operator.
Inf. Process. Lett., 63(5):243–246, 1997. doi:10.1016/S0020-0190(97)00133-6.

[16] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977. doi:10.1109/SFCS.1977.32.
[17] Artem Polyvyanyy, Chun Ouyang, Alistair Barros, and Wil M. P. van der Aalst. Process querying: Enabling business

intelligence through query-based process analytics. Decis. Support Syst., 100:41–56, 2017. doi:10.1016/j.dss.2017.04.011.
[18] Artem Polyvyanyy, Matthias Weidlich, and Mathias Weske. Isotactics as a foundation for alignment and abstraction of

behavioral models. In BPM, pages 335–351, 2012. doi:10.1007/978-3-642-32885-5_26.
[19] Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM J. Res. Dev., 3(2):114–125, 1959.

doi:10.1147/rd.32.0114.
[20] Arend Rensink and Roberto Gorrieri. Vertical implementation. Inf. Comput., 170(1):95–133, 2001. doi:10.1006/inco.

2001.2967.
[21] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology, Boston, 2006.
[22] Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams, and Nick Russell. Modern Business Process

Automation: YAWL and Its Support Environment. Springer Publishing Company, Incorporated, 1st edition, 2009.
[23] Wil M. P. van der Aalst. Inheritance of business processes: A journey visiting four notorious problems. In Petri Net

Technology for Communication-Based Systems, pages 383–408, 2003. doi:10.1007/978-3-540-40022-6_19.
[24] Wil M. P. van der Aalst. Business alignment: using process mining as a tool for Delta analysis and conformance testing.

Requir. Eng., 10(3):198–211, 2005. doi:10.1007/s00766-005-0001-x.
[25] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Replaying history on process models for

conformance checking and performance analysis. Wiley Interdiscip. Rev.-Data Mining Knowl. Discov., 2(2):182–192, 2012.
doi:10.1002/widm.1045.

[26] Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In CONCUR, volume 458 of Lecture
Notes in Computer Science, pages 278–297. Springer, 1990. doi:10.1007/BFb0039066.

[27] Rob J. van Glabbeek and Ursula Goltz. Well-behaved flow event structures for parallel composition and action refinement.
Theor. Comput. Sci., 311(1–3):463–478, 2004. doi:10.1016/j.tcs.2003.10.031.

[28] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change patterns and change support features – enhancing
flexibility in process-aware information systems. Data Knowl. Eng., 66(3):438–466, 2008. doi:10.1016/j.datak.2008.05.

001.
[29] Matthias Weidlich, Remco M. Dijkman, and Jan Mendling. The ICoP framework: Identification of correspondences between

process models. In CAiSE, pages 483–498, 2010. doi:10.1007/978-3-642-13094-6_37.
[30] Matthias Weidlich, Remco M. Dijkman, and Mathias Weske. Deciding behaviour compatibility of complex correspondences

between process models. In BPM, pages 78–94, 2010. doi:10.1007/978-3-642-15618-2_8.
[31] Matthias Weidlich, Remco M. Dijkman, and Mathias Weske. Behaviour equivalence and compatibility of business process

models with complex correspondences. Comput. J., 55(11):1398–1418, 2012. doi:10.1093/comjnl/bxs014.
[32] F. Wijnhoven, T. Spil, R. Stegwee, and R.T.A. Fa. Post-merger IT integration strategies: An IT alignment perspective. J.

Strateg. Inf. Syst., 15(1):5–28, 2006. doi:10.1016/j.jsis.2005.07.002.

Appendix A. Proofs

Lemma 5.1. For i ∈ {1, 2}, let Λi be a set of labels and let Σi ⊆ Λ∗
i . Let b be a bijection from Λ1 to Λ2, and

let & ∶= {({λ},{b(λ)}) ∣ λ ∈ Λ1}. If T 1&(Σ1) and T 2&(Σ2) are trace equivalent up to b, then Σ1 ≑& Σ2. ⌟

Proof. According to Definition 2.1, there exists a bijection R from T 1&(Σ1) to T 2&(Σ2) such that for all

(w1,w2) ∈ R it holds that (i) ∣w1∣ = ∣w2∣, and (ii) for all i ∈ {1, . . . , ∣w1∣} it holds that b(w1(i)) = w2(i).
Let (w1,w2) ∈ R. Because &⊆ ℘=1(Λ1) × ℘=1(Λ2), for all i ∈ {1, . . . , ∣w1∣} it holds that ∣w1(i)∣ = 1 = ∣w2(i)∣.
Therefore, for i ∈ {1,2}, wi is the only tactic of wi. Note that for all i ∈ {1, . . . , ∣w1∣}, it also holds that
w1(i) & w2(i) and, thus, {1, . . . , ∣w1∣}/w1 = {1, . . . , ∣w2∣}/w2. Then, it trivially holds that (w1,w2) ∶ w1 & w2,
cf. Definition 3.6; one can use the identity relation on {1, . . . , ∣w1∣}/w1 as a bijection from {1, . . . , ∣w1∣}/w1 to
{1, . . . , ∣w2∣}/w2 to justify this fact. Because R is a bijection, we get Σ1 ⩿& Σ2. Because R and & are bijections,
we get Σ2 ⩿&−1 Σ1; note that & is a bijection because b is a bijection. Thus, it holds that Σ1 ≑& Σ2. ◾

Lemma 5.2. For i∈{1, 2}, let Λi be a set of labels and let Σi⊆Λ∗
i be repetition-free. Let b be a bijection from Λ1

to Λ2, and let &∶={({λ},{b(λ)}) ∣ λ ∈ Λ1}. If Σ1≑&Σ2, then T 1&(Σ1) and T 2&(Σ2) are trace equivalent up to b. ⌟

Proof. Because & is a relation on singletons, for i ∈ {1,2}, wi ∈ T i&(Σi) is the only tactic of wi. Let

R ∶= {(x, y) ∈ T 1&(Σ1) × T 2&(Σ2) ∣ (x, y) ∶ x & y}. Let (w1,w2) ∈ R. Because Σ1 and Σ2 are repetition-free and
because & is a bijection, it holds that w1 and w2 are repetition-free; note that & is a bijection because b
is a bijection. Therefore, for i ∈ {1,2}, it holds that {1, . . . , ∣wi∣}/wi = ℘=1({1, . . . , ∣wi∣}). Hence, ∣w1∣ = ∣w2∣
and for all k ∈ onetoww1 it holds that w1(k) & w2(k) and, thus, b(w1(k)) = w2(k). Next, we show that
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R is a bijection from T 1&(Σ1) to T 2&(Σ2). Let (w1,w2), (w′
1,w

′
2) ∈ R and i, j ∈ {1,2}, i ≠ j. Let us assume

that wi = w′
i. As shown above, it holds that ∣wi∣ = ∣wj ∣ and ∣w′

i∣ = ∣w′
j ∣. Then, wi = w′

i yields ∣wj ∣ = ∣w′
j ∣.

Additionally, for every k ∈ {1, . . . , ∣wi∣} it holds that w1(k) & w2(k) and w′
1(k) & w′

2(k). Because wi = w′
i and

& is a bijection, wj(k) = w′
j(k), k ∈ {1, . . . , ∣wj ∣}. Hence, it holds that wj = w′

j . Finally, because Σ1 ⩿& Σ2 and
Σ2 ⩿&−1 Σ1, for i ∈ {1, 2}, it holds that for all σ ∈ Σi there exists (w1,w2) ∈ R such that T i&(σ) = wi. Thus, R

is a bijection from T 1&(Σ1) to T 2&(Σ2) that justifies the fact that T 1&(Σ1) and T 2&(Σ2) are trace equivalent up
to b. ◾

Lemma 6.1. Let & ∶ Λ1 ⊗Λ2 be an alignment. For i ∈ {1,2}, let σi ∈ Λ∗
i , wi ∶= T i&(σi), θi be a tactic of wi,

and let ϕi ∈ LTL[ i&] be tactic-invariant w.r.t. Λi and i&. Let ϕ1 and ϕ2 be aligned by &, i.e., ϕ1 & ϕ2, and let
(θ1, θ2) ∶ w1 & w2. Then, it holds that w1 ⊧ ϕ1 iff w2 ⊧ ϕ2. ⌟

Proof. For i ∈ {1,2}, it holds that θi ⊧ ϕi iff wi ⊧ ϕi, because ϕi is tactic-invariant. We show that θ1 ⊧ ϕ1

iff θ2 ⊧ ϕ2 by the structural induction on ϕ1. Let ϕ1 ∶= ⋁K1∈K1
K1 and ϕ2 ∶= ⋁K2∈K2

K2, where K1 ⊆ 1&
and K2 ⊆ 2& such that (K1 × 2&) ∩ & = ( 1& × K2) ∩ &. Then, for j ∈ {1,2}, θj ⊧ ϕj iff θj(1) ∩ Kj /= ∅. Because
θ1(1) & θ2(1), θ1(1) ∩ K1 /= ∅ iff θ2(1) ∩ K2 /= ∅ and, thus, it holds that θ1 ⊧ ϕ1 iff θ2 ⊧ ϕ2. Let ϕ1 ∶= ¬ψ1

and ϕ2 ∶= ¬ψ2 such that ψ1 & ψ2. Then, for k ∈ {1,2}, it holds that θk ⊧ ψk iff θk /⊧ ϕk. Using the inductive
assumption, we conclude that θ1 ⊧ ϕ1 iff θ2 ⊧ ϕ2. Let ϕ1 ∶= ψ1 ∨ ψ′1 and ϕ2 ∶= ψ2 ∨ ψ′2 such that ψ1 & ψ2

and ψ′1 & ψ′2. Then, for k ∈ {1,2}, it holds that θk ⊧ ϕk iff θk ⊧ ψk or θk ⊧ ψ′k. Again, using the inductive
assumption, we conclude that θ1 ⊧ ϕ1 iff θ2 ⊧ ϕ2. Let ϕ1 ∶= ψ1 U ψ

′
1 and ϕ2 ∶= ψ2 U ψ

′
2 such that ψ1 & ψ2 and

ψ′1 & ψ′2. Then, for k ∈ {1,2}, it holds that θk ⊧ ϕk iff there exists ιk ∈ {1, . . . , ∣θk ∣} such that θk[ιk⟩ ⊧ ψ′k
and θk[η⟩ ⊧ ψk for all η ∈ {1, . . . , ιk − 1}. By definition, for k ∈ {1,2} and ι ∈ {1, . . . , ∣θk ∣ − 1} it holds that
ι =θk ι + 1 implies θk(ι) = θk(ι + 1). Because of the stutter equivalence of LTL-formulae without the next
operator [15], ι =θk ι+ 1 also implies that θk[ι⟩ and θk[ι+ 1⟩ satisfy exactly the same LTL-formulae. Applying
the inductive assumption then yields θ1 ⊧ ϕ1 iff θ2 ⊧ ϕ2. Finally, because ψ1 and ψ2 are tactic-invariant, it
holds that w1 ⊧ ϕ1 iff w2 ⊧ ϕ2. ◾

Lemma 6.2. Θ̂ = Θ̂′ iff ϕ is tactic-invariant w.r.t. Λ and κ. ⌟

Proof. We show both directions separately.
1. “1.⇒2.”: Let w ∈ Tκ(Λ∗) and θ ∈ Tactics(w). Assume first w ⊧ ϕ. Then, w ∈ W , and thus θw ∈ Θ̂.

Then, by assumption, θ ∈ Θ̂′. Hence, θ ∈ Θ. Therefore, θ ⊧ ϕ. Symmetrically, if θ ⊧ ϕ, then θ ∈ Θ, and
thus also θw ∈ Θ̂′. Then, by assumption, θw ∈ Θ̂. Then, w ∈W , and therefore w ⊧ ϕ.

2. “2.⇒1.”: Assume first θw ∈ Θ̂. Then, w ∈ Tκ(Λ∗) with w ⊧ ϕ, and θ ∈ Tactics(w) of w. Because ϕ is
tactic-invariant, θ ⊧ ϕ. Thus, θ ∈ Θ, and θw ∈ Θ̂′. Now, assume θw ∈ Θ̂′. Then, there exists a tactic
θ ∈ Θ of some word w, such that θ ⊧ ϕ. Because ϕ is tactic-invariant, w ⊧ ϕ. Therefore, θw ∈ Θ̂′.

◾

Lemma 6.3. It is decidable whether Θ̂ and Θ̂′ are equal sets. ⌟

Proof. We construct an FSM Sϕ from ϕ, such that L(Sϕ) is the set of all traces satisfying ϕ. Then, we
construct FSMs S and S accepting all w ∈ Tκ(Λ∗) with w(i) /= ∅ for all i ∈ {1, . . . , ∣w∣}, and θ ∈ Tactics(w)
and S accepts w, respectively. Let SW be the intersection of Sϕ and S, and let SΘ be the intersection of Sϕ
and S. We construct the FSM ŜΘ from SW by replacing each transition q KÐ→SW q′ by a transition q

(K,K)ÐÐÐ→ŜΘ
q′

for each K ∈ K. Then, we construct the FSM Ŝ′Θ from SΘ by replacing each transition q
{K}ÐÐ→SΘ

q′ by a

transition q
(K,K)ÐÐÐ→ŜΘ′q

′ for each K ∈ Gκ(Λ) with K ∈ K. Obviously, the languages of ŜΘ and Ŝ′Θ are Θ̂ and

Θ̂′, respectively. Thus, we decide Θ̂ = Θ̂′ by deciding equivalence of ŜΘ and Ŝ′Θ. ◾

Lemma 7.5. For i ∈ {1,2}, let wi ∈ ℘( i&)∗. Let (w1,w2) be realisable in W(S1, S2,&) resulting in a node
v = (q1, q2,M). For each (K1,K2) ∈ M , there exist a tactic θ1 of w1 and a tactic θ2 of w2, such that
(θ1, θ2) ∶ w1 & w2 and for all i ∈ {1,2}: ∣wi∣ > 0⇒ θi(∣wi∣) = {Ki}. ⌟
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Proof by induction over the length of the realising path. Because (w1,w2) is realisable, there exists a path π
of W(S1, S2,&) resulting in v, such that for i ∈ {1, 2}, the restriction of π[i] to non-empty sets yields wi. Let
∣π∣ = 0. Then, w1 = w2 = ε, trivially satisfying the requirements. Let ∣π∣ = 1. Inspecting the rules 2(a) and 2(b)
of Definition 7.3, we find that only a) can produce an edge from the node (qini1 , qini2 ,∅). Hence, for i ∈ {1, 2},
π[i] = Ki /= ∅, and thus wi = Ki. Additionally, M = (K1 ×K2) ∩ &. Hence, for each (G1,G2) ∈M , there also
exists the tactics θi = {Gi} and b proving (θ1, θ2) ∶ w1 & w2. Now, let ∣π∣ = n ≥ 2, and the proposition hold for
all realising paths π′ with ∣π′∣ < n. Let the penultimate node of π be v̂ = (q̂1, q̂2, M̂).

1. Assume that the last edge of π is produced by rule 2(a) and labelled K1,K2. For i ∈ {1, 2}, wi(∣wi∣) = Ki,
and, because M̂ /= ∅, M = {(K1,K2) ∈ ((K1 ×K2) ∩ &) ∖ M̂ ∣ ∃(K̂1, K̂2) ∈ M̂ ∶K1 /= K̂1 ∧K2 /= K̂2} /= ∅.
Let ŵi = wi(1) . . .wi(∣wi∣ − 1). Let (K1,K2) ∈ M . Then, (ŵ1, ŵ2) is realisable resulting in v̂ by the
prefix of π with length n − 1 > 0. Therefore, for each (K̂1, K̂2) ∈ M̂ , and i ∈ {1,2}, there exist a tactic

θ̂i of ŵi with θ̂i(∣ŵi∣) = K̂i, and b̂ proving (θ̂1, θ̂2) ∶ ŵ1 & ŵ2. Then, for i ∈ {1,2}, θ̂i(∣ŵi∣) /= {Ki}. Now,

set θi = θ̂i{Ki}. Then, {1, . . . , ∣wi∣}/θi = {1, . . . , ŵi}/θ̂i ∪ {{∣wi∣}}, that is, θi adds another equivalence

class “to the end” of θ̂i. Let b = b̂ ∪ {(∣w1∣, ∣w2∣)}. Because b proves (θ̂1, θ̂2) ∶ ŵ1 & ŵ2, and K1 &K2, b̂
proves (θ1, θ2) ∶ w1 & w2.

2. Assume that the last edge of π is produced by rule 2(b) and labelled (K1,K2). Then, there exist
i, j ∈ {1,2}, i ≠ j, λi ∈ Λi, Ki = G i&(λi), such that q̂i

λiÐ→iqi, and M = {(K1,K2) ∈ M̂ ∣ ∃ i ∈ {1,2} ∶
Ki ∈ Ki}. Let ŵi = wi(1) . . .wi(∣wi∣ − 1). Let ŵj = wj . Then, (ŵ1, ŵ2) is realisable resulting in v̂

by the prefix of π with length n − 1 > 0. Therefore, for k ∈ {1,2}, and each (K1,K2) ∈ M̂ (thus

also (K1,K2) ∈ M), there exist a tactic θ̂k of ŵk with θ̂k(∣ŵk ∣) = Ki, θ̂j(∣ŵj ∣) = Ĝj , and b̂ proving

(θ̂1, θ̂2) ∶ ŵ1 & ŵ2. Let θi = θ̂i{Ki}, X̂ = ⟨∣ŵi∣⟩θ̂i be the “last” equivalence class in θ̂i, and X = X̂ ∪{∣wi∣}.

Then, {1, . . . , ∣wi∣}/θi = {1, . . . , ŵi}/θ̂i∖{X̂}∪{X}, that is, the “last” equivalence class of θi is the union

of the last equivalence class of θ̂i and {∣wi∣}. Let θj = θ̂j , Ŷ = ⟨∣ŵj ∣⟩θ̂j and b = b̂ ∖ {(X̂, Ŷ )} ∪ {(X, Ŷ )}.

Then, b proves (θ1, θ2) ∶ w1 & w2.
◾

Lemma 7.6. For i ∈ {1, 2}, let σi be a prefix of some word in L(Si), and wi = T i&(σi). Let for i ∈ {1, 2}, θi be

a tactic of wi, such that (θ1, θ2) ∶ w1 & w2. Then, (w1,w2) is realisable resulting in some node v = (q1, q2,M)
with ∣w1∣ > 0⇒ ∣w2∣ = 0 ∧ (θ1(∣w1∣), θ2(∣w2∣)) ∈M . ⌟

Proof by induction over the number of equivalence classes in the tactics. Let w1,w2 be traces with respec-
tive tactics θ1, θ2, such that (θ1, θ2) ∶ w1 & w2. Let n = ∣{1, . . . , ∣w∣}1/θ1∣. We observe n = ∣{1, . . . , ∣w2∣}/θ2∣
because there exists a bijection b aligning θ1 and θ2.

1. Let n = 0. Then, w1 = w2 = ε. Then, the empty path proves realisability of (w1,w2).

2. Let n = 1. Then, for i ∈ {1, 2}, there exists a label λi and a state qi with qinii
λiÐ→Siqi, wi = T i&(λi) = G i&(λi),

and Ki ∈ G i&(λi). Let M = ∅ + (G 1&(λ1),G 2&(λ2)). From (θ1, θ2) ∶ w1 & w2, we get K1 & K2 and

(K1,K2) ∈ M . Hence, M /= ∅, and rule 2(a) produces an edge labelled (G 1&(λ1),G 2&(λ2)) from

(qini1 , qini2 ,∅) to node (q1, q2,M) in W(S1, S2,&).

3. Let n > 1 and assume that the lemma holds for all alignable traces and respective tactics with n − 1
equivalence classes. We first introduce an auxiliary notation for this part of the proof: Let w be
some trace with ∣w∣ > 1 and θ be a tactic of w. Let cut(θ) denote the maximal index in {1, . . . , ∣w∣}
with θ(i) /= θ(∣w∣). We observe 1 ≤ cut(θ) < ∣w∣. Now, for i ∈ {1,2}, let ŵi = wi(1) . . .wi(cut(θi))
and θ̂i = θi(1) . . . θi(cut(θi)). Let b̂ = b ∖ {(⟨∣w1∣⟩θ1 , ⟨∣w2∣⟩θ2)}. Then, b̂ proves (θ̂1, θ̂2) ∶ ŵ1 & ŵ2,

and we observe ∣{1, . . . , ŵi}/θi∣ = n − 1 for i ∈ {1,2}. Let for i ∈ {1,2}, θ̂i(cut(θi)) = {K̂i}. By
assumption, (ŵ1, ŵ2) is realisable resulting in a node (q̂1, q̂2, M̂) with (K̂1, K̂2) ∈ M̂ . By assumption,
for i ∈ {1,2}, there exists a label λi, and a transition q̂i

λiÐ→qi with G i&(λi) = wi(cut(θi) + 1) and

Ki = θi(cut(θi) + 1) ∈ G i&(λi). We distinguish the cases (K1,K2) /∈ M̂ and (K1,K2) ∈ M̂ .
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(a) Let (K1,K2) /∈ M̂ . Let M = M̂ + (G 1&(λ1),G 2&(λ2)). From K1 &K2, (K̂1, K̂2) ∈ M̂ , K̂1 /=K1 and

K̂2 /=K2, we conclude (K1,K2) ∈M and M /= ∅. Therefore, rule 2(a) produces an edge labelled
(G 1&(λ1),G 2&(λ2)) from node (q̂1, q̂2, M̂) to the node (q1, q2,M).

(b) Let (K1,K2) ∈ M̂ . Let M ′ = M̂+(G 1&(λ1),∅) and M =M ′+(∅,G 2&(λ2)). Then, (K1,K2) ∈M ′∩M ,

and hence M ′ /= ∅ /=M . From M ′ /= ∅ and M /= ∅, we conclude that rule 2(b) produces an edge
labelled (G 1&(λ1),∅) from (q̂1, q̂2, M̂) to (q1, q̂2,M

′), and an edge labelled (∅,G 2&(λ2)) from

(q1, q̂2,M
′) to (q1, q2,M).

If for i ∈ {1,2}, cut(θi) = ∣wi∣ − 1, we are finished. Otherwise, rule 2(b) produces the remaining edges:
We first add the edges for the remaining elements of w1, and then for the remaining elements of w2,
resulting in edges labelled

(w1(cut(θi) + 2),∅) . . . (w1(∣wi∣),∅) (∅,w2(cut(θi) + 2) ) . . . (∅,w2(∣w2∣) )

and nodes (q1
1 , q2,M1) . . . (q`1, q2,M`)(q`1, q1

2 ,M`+1) . . . (q`1, qm2 ,M`+m), where for each 1 ≤ j ≤ ` +m, we
exploit (K1,K2) ∈Mj .

◾

Lemma 7.8. The following statements are equivalent:

1. L1(W(S1, S2,&)) = T 1&(L(S1)) and L2(W(S1, S2,&)) = T 2&(L(S2)).

2. L(S1) ≑& L(S2). ⌟

Proof. We show both directions separately.
1. “1⇒ 2”: We show: For each w1 ∈ T 1&(L(S1)), there exists w2 ∈ T 2&(L(S2)), and tactics θ1 and θ2 of

w1 and w2, respectively, such that there is b proving (θ1, θ2) ∶ w1 & w2. From w1 ∈ T 1&(L(S1)) and the

assumption, we get w1 ∈ L1(W(S1, S2,&)). Hence, there exists a path π of W(S1, S2,&), such that
π[i]/=∅ = w1, resulting in a node (q1, q2,M) satisfying q1 ∈ F1 and q2 ∈ F2. Let w2 = π[2]/=∅. Then, by
definition, (w1,w2) are realisable. Applying Lemma 7.5 yields the existence of required θ1, θ2 and b. It
now remains to be shown that w2 ∈ T 2&(L(S2)), which follows directly from the assumption.

2. “2⇒ 1”:
� We show L1(W(S1, S2,&)) ⊆ T 1&(L(S1)). Let w1 ∈ L1(W(S1, S2,&)). Hence, there exists a path

π of W(S1, S2,&), such that π[1]/=∅ = w1, resulting in a node (q1, q2,M) satisfying q1 ∈ F1 and
q2 ∈ F2. Now, we can show by induction, that there exists an accepting path of S1 accepting some
σ1 with T 1&(σ1) = w1.

� We show L1(W(S1, S2,&)) ⊇ T 1&(L(S1)) and L2(W(S1, S2,&)) ⊇ T 2&(L(S2)). Let w1 ∈ T 1&(L(S1)).
Then, by assumption, there exists w2 ∈ T 2&(L(S2)), θ1, θ2 and b proving (θ1, θ2) ∶ w1 & w2. Hence,

by Lemma 7.6, (w1,w2) is realisable, yielding some node (q1, q2,M). Hence, there exists a path
π with π[1]/=∅ = w1 and π[2]/=∅ = w2. Because for i ∈ {1,2}, wi ∈ T i&(L(Si)), it holds that qi ∈ Fi.
Hence, for i ∈ {1,2}, wi ∈ Li(W(S1, S2,&)).

◾

Lemma 7.9. For i ∈ {1,2}, the following problem is decidable:
To decide whether it holds that Li(W(S1, S2,&)) = T i&(L(Si)). ⌟

Proof. W(S1, S2,&) is obviously finite and computable. Further, one can construct an FSM S accepting
Li(W(S1, S2,&)), i ∈ {1,2}, by following this procedure:

1. Each node of W(S1, S2,&) is a state of S.
2. For each edge (v,K1,K2, v

′) of W(S1, S2,&) introduce a transition v
KiÐ→Sv′,

3. Set the node (qini1 , qini2 ,∅) as the initial state.
4. A state (q1, q2,M) is a final state of S iff q1 ∈ F1 and q2 ∈ F2.
5. Finally, remove all ∅-transitions with a standard ε-removal algorithm [21].

We decide Li(W(S1, S2,&)) = T i&(L(Si)) by checking language equivalence of S and Si. ◾
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Appendix B. Example for Lemma 6.3

This section introduces an example for the decision procedure explained in the proof of Lemma 6.3. We
consider the example alignment & given by Figure 1, and the LTL[ 2&]-formula ϕ = {t, u}U ({s, v} ∨ {s,w, x}).
Then, Sϕ consists of an initial state q1, a final state q2, for each K ⊆ 2& a transition q2

KÐ→q2 (in the following
abbreviated as q2

∗Ð→q2), and for each K ⊆ 2& satisfying {s, v} ∈ K implies {s,w, x} /∈ K a transition q1
KÐ→q2,

namely:

q1
∅Ð→q2, q1

{{t, u}}ÐÐÐÐ→q2, q1
{{s, v}}ÐÐÐÐ→q2,

q1
{{s, v},{t, u}}ÐÐÐÐÐÐÐÐ→q2, q1

{{s,w,x}}ÐÐÐÐÐÐ→q2, q1
{{s,w,x},{t, u}}ÐÐÐÐÐÐÐÐÐ→q2 .

SW has the same initial and final states, and the following transitions:

q1
{{t, u}}ÐÐÐÐ→q2, q1

{{s, v}}ÐÐÐÐ→q2, q1
{{s,w,x}}ÐÐÐÐÐÐ→q2,

q2
{{t, u}}ÐÐÐÐ→q2, q2

{{s, v}}ÐÐÐÐ→q2, q2
{{s,w,x}}ÐÐÐÐÐÐ→q2, q2

{{s, v},{s,w,x}}ÐÐÐÐÐÐÐÐÐ→q2 .

SΘ has the same initial and final states, and the following transitions:

q1
{{t, u}}ÐÐÐÐ→q2, q1

{{s, v}}ÐÐÐÐ→q2, q1
{{s,w,x}}ÐÐÐÐÐÐ→q2,

q2
{{t, u}}ÐÐÐÐ→q2, q2

{{s, v}}ÐÐÐÐ→q2, q2
{{s,w,x}}ÐÐÐÐÐÐ→q2 .

ŜΘ has the initial and final states, and the following transitions:

q1
({{t, u}},{{t, u}})ÐÐÐÐÐÐÐÐÐÐ→q2, q1

({{s, v}},{{s, v}})ÐÐÐÐÐÐÐÐÐÐ→q2, q1
({{s,w,x}},{{s,w,x}})ÐÐÐÐÐÐÐÐÐÐÐÐÐ→q2,

q2
({{t, u}},{{t, u}})ÐÐÐÐÐÐÐÐÐÐ→q2, q2

({{s, v}},{{s, v}})ÐÐÐÐÐÐÐÐÐÐ→q2, q2
({{s, v}},{{s, v},{s,w,x}})ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→q2,

q2
({{s,w,x}},{{s,w,x}})ÐÐÐÐÐÐÐÐÐÐÐÐÐ→q2, q2

({{s,w,x}},{{s, v},{s,w,x}})ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→q2 .

Ŝ′Θ evolves from ŜΘ by adding the following transitions:

q1
({{s, v}},{{s, v},{s,w,x}})ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→q2, q1

({{s,w,x}},{{s, v},{s,w,x}})ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→q2.

It is obvious that Ŝ′Θ accepts the language of ŜΘ, and, in addition, all those sequences that start with
({{s, v}},{{s, v},{s,w, x}}) and ({{s,w, x}},{{s, v},{s,w, x}}), respectively. Therefore, ϕ is not tactic-
invariant.
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